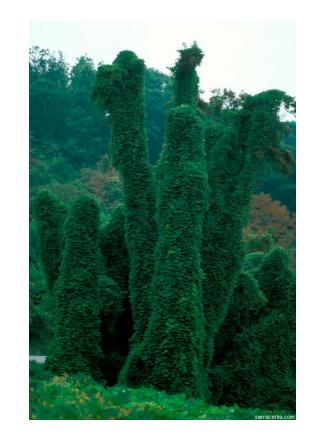

EOC Review

Human Population Growth

- Human population has been growing exponentially-will continue until carrying capacity is reached
 - More people means a higher need for energy, water, and nutrients
 - As we grow, developing new resources, conservation, and recycling will become increasingly important


Human Activities that Impact the Environment

Pollution
Global Warming
Burning Fossil Fuels
Habitat Destruction

Human Activities that Impact the Environment

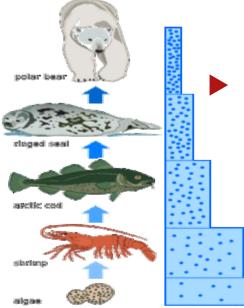
- Nonnative Species (Invasive Species)-Organism introduced into new environment
 - Impact: Often have no natural predators; can reproduce out of control and cause competition with <u>native</u> species

Impacts on North Carolina Ecosystems

Acid Rain-Rain with a pH lower than 5.6

Impact: Damaging plants and animal that feed on them; affect and damage pH of aquatic habitats

Beach Erosion-Sand is carried away from beaches


Impact: Homes in coastal areas vulnerable to damage, alters beach ecosystems

Urban Development-Growth of cities

Impact: Land/habitats often cleared for use

Impacts on North Carolina Ecosystems

- Waste Lagoons/Hog Farms-Release sewage, fertilizer, and sediment into water (eutrophication)
 - Impact: Algal blooms that harm the ecosystem

- Bioaccumulation-An increase in the amount of a substance (ex. Pesticides) in the tissues of an organism
 - Impact: May directly impact the organism or their offspring; can end up in human consumed food as well

Impacts on Natural Resources

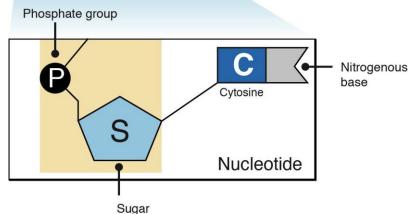
- Resource Depletion-Supply is limited on some, and humans often use more than they need
 - Impact: Resource acquisition often destroys land and habitats

Deforestation-The removal of trees in an area

- Impact: Destroys habitats, lowers biodiversity, adds CO₂
- Pesticides-Chemicals designed to kill pests, such as insects and rodent, in order to reduce disease and increase food production
 - Impact: Can sicken animals other than target pest (ex. bees); runoff can carry pesticides to nearby bodies of water

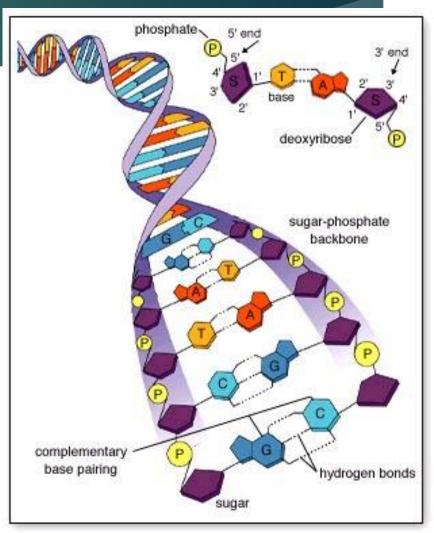
Conservation

Conservation: The careful use and protection of resources


- Sustainability: The ability of a population or ecosystem to survive indefinitely
- ► How do we help?
 - Reduce use of fossil fuels
 - Reuse and recycle waste
 - Protecting endangered species
 - Habitat restoration

The Building Blocks of DNA

Nucleotides: Composed of 1 phosphate, 1 sugar, and 1 nitrogenous base


- ▶ The sugar is deoxyribose in DNA, and ribose in RNA
- In DNA, bases are A (<u>Adenine</u>), T (<u>Thymine</u>), C (<u>Cytosine</u>), and G (<u>Guanine</u>)
- When joined together, the nucleotides form a nucleic acid (DNA or RNA)

DNA Structure

DNA takes the shape of a double helix ("twisted ladder")

- The "sides" of the ladder are alternating phosphate-sugar groups
- The "rungs" of the ladder are complementary nitrogenous <u>base pairs</u>, held together by <u>hydrogen bonds</u>
- A always pairs with T, and C always pairs with G!

About DNA

- The sequences of nucleotides in DNA code for proteinscentral to cell function and life
- Cells respond to their environments by producing different types and amounts of proteins
- All organisms DNA contains the same base pairs, ATGC
- All of the cells within an organism contain the same DNA-the expression of those genes differs to create traits

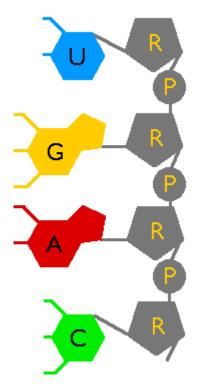
DNA Replication

- Recall that DNA is replicated during the S phase of the cell cycle, before the cell divides
- Replicate=To make a copy
- During replication, DNA is unzipped down the middle by the enzyme helicase.
 - Nucleotides separate, breaking strand into two halves
 - Each half is used to construct two identical DNA molecules

Polvme

Standards 3.1.2 and 3.1.3

PROTEIN SYNTHESIS AND MUTATIONS

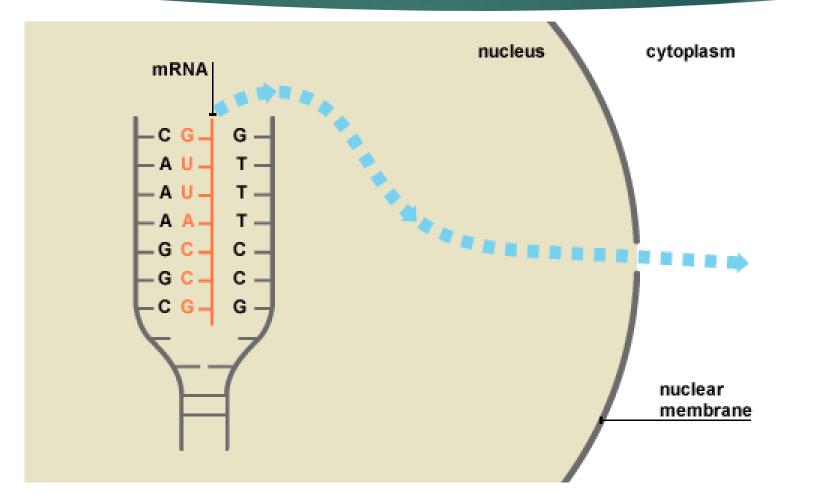

Proteins

Proteins are large organic molecules that provide many functions

- Structural support, like forming a part of cell materials (ex. Collagen that forms bones)
- Functional support, like hormones, enzymes, and chemicals(ex. <u>Hemoglobin</u> <u>transporting oxygen</u>)
- The <u>building blocks</u> of proteins are called <u>amino acids</u>. Amino acids link together to form a protein.
 - Some amino acids we make. Others, we must get from food (essential amino acids)

RNA

- The instructions for making proteins are found in DNA. RNA plays a role in delivering those instructions to the <u>ribosome</u> for production.
- RNA is a nucleic acid. Like DNA, they are composed of nucleotides. Key differences in DNA and RNA are:
 - RNA has the sugar ribose
 - RNA is single stranded
 - RNA can leave the nucleus
 - RNA has the base U (uracil) instead of T (thymine)
- The three types of RNA involved in protein synthesis are mRNA, tRNA, and rRNA. All three play a role in helping proteins be made.

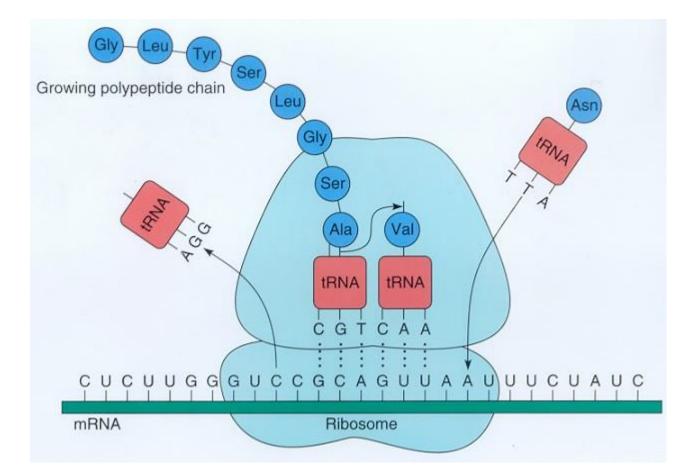

Protein Synthesis: Transcription

Protein Synthesis=the process in which cells make proteins. It is broken up into two main parts, transcription and translation.

► Translation: DNA → RNA

- When a protein is needed, <u>mRNA</u> must be made to deliver the <u>message</u> to the <u>ribosome</u>. Remember, DNA <u>cannot</u> leave the nucleus.
- To do this, the segment of DNA needed temporarily unzips. The DNA is used as a <u>template</u> to make an mRNA strand. Remember, <u>uracil replaces thymine</u>.
- Once the mRNA strand is complete, it can leave the nucleus to travel to the ribosome for protein production.

Transcription: A Closer Look



Protein Synthesis: Translation

► Translation: RNA → Protein

- Once the mRNA lands on the ribosome, the mRNA <u>codons</u> can be read and translated into <u>amino acids</u>
 - ▶ Every 3 letters on the mRNA is called a *codon*. 1 codon codes for 1 amino acid.
- As each codon is read, a <u>tRNA</u> molecule delivers the correct <u>amino acid</u>. The tRNA knows where to land because it has a complimentary <u>anticodon</u> that corresponds to the <u>codon</u> on the mRNA
- As the amino acids are dropped off, they link together to form an amino acid chain. The chain will continue to grow until a <u>stop codon</u> is reached.
- At this point, the protein is complete and ready to be used!

Translation: A Closer Look

Reading a Codon Chart

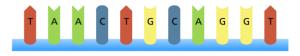
Identify the amino acids:

► AUG

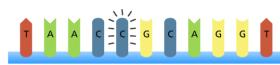
► CCC

► GAC

► UGA


First Base									Third Base
Dase	U		С	5.	A		G		Dase
	UUU	Phenylalanine	UCU	Serine	UAU	Tyresine	UGU	Cysteine	U
U	UUC	Phenylalanine	UCC	Serine	UAC	Tyresine	UGC	Cysteine	С
	UUA	Leucine	UCA	Serine	UAA	Stop	UGA	Stop	Α
	UUG	Leucine	UCG	Serine	UAG	Stop	UGG	Tryptophan	G
	CUU	Leucine	CCU	Proline	CAU	Histidine	CGU	Arginine	U
C	CUC	Leucine	CCC	Proline	CAC	Histidine	CGC	Arginine	С
	CUA	Leucine	CCA	Proline	CAA	Glutamine	CGA	Arginine	Α
	CUG	Leucine	CCG	Proline	CAG	Glutamine	CGG	Arginine	G
	AUU	Isoleucine	ACU	Threenine	AAU	Asparagine	AGU	Serine	U
A	AUC	Isoleucine	ACC	Threonine	AAC	Asparagine	AGC	Serine	С
	AUA	Isoleucine	ACA	Threonine	AAA	Lysine	AGA	Arginine	Α
	AUG	Methionine or start	ACG	Threonine	AAG	Lysine	AGG	Arginine	G
	GUU	Valine	GCU	Alanine	GAU	Aspartic Acid	GGU	Glycine	U
G	GUC	Valine	GCC	Alanine	GAC	Aspartic Acid	GGC	Glycine	С
	GUA	Valine	GCA	Alanine	GAA	Glutamic Acid	GGA	Glycine	Α
	GUG	Valine	GCG	Alanine	GAG	Glutamic Acid	GGG	Glycine	G

Mutations


Mutations are changes in a gene or chromosomes

- May occur spontaneously (ex. Mistake during DNA replication)
- May occur in response to environment (ex. UV radiation causing <u>cancer</u>)
- May be <u>harmful</u>, exhibit <u>no change</u>, or introduce a <u>new trait</u> to a population
- ► Types of mutations in DNA:
 - Substitution: One nucleotide replaces another (may or may not cause change in amino acid sequence)
 - Insertion/Deletion: One base is added or removed (changes the entire amino acid sequence after the mutation)

Original sequence

Point mutation

Standard 3.2.1

MEIOSIS AND GENETIC DIVERSITY

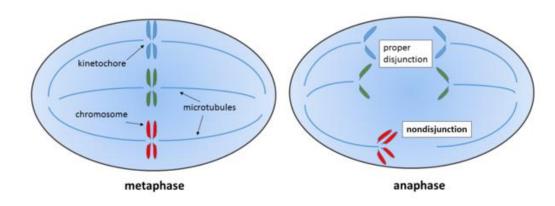
Meiosis

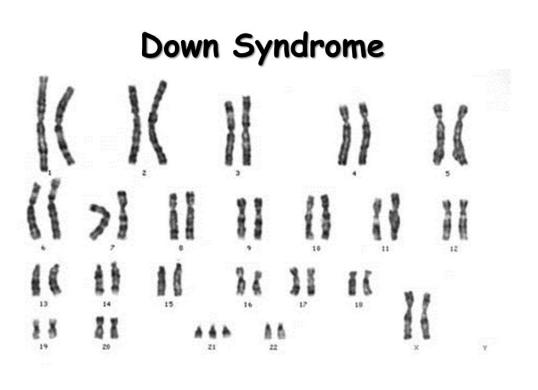
- Recall that your body cells, or <u>somatic cells</u>, reproduce via <u>mitosis</u> for <u>growth and repair</u>
- In your reproductive cells, a different process occurs. This process is called Meiosis.
- Meiosis is a form of sexual reproduction. This means it requires the cells of two parents to create a new organism
 - ▶ The cells produced from this process are called gametes (sperm and egg cells)
 - ▶ When two gametes join at <u>fertilization</u>, the resulting cell is called a **zygote**
 - Remember, gametes have half (n) the number of chromosomes. After fertilization, the resulting organism will have the correct number (2n).

Comparing Mitosis to Meiosis

	Mitosis	Meiosis		
Type of Reproduction?	Asexual	Sexual		
Number of Divisions	1	2		
Number of Cells Produced	2	4		
Haploid or Diploid	Diploid	Haploid		
Number of Chromosomes (humans)	46	23		

How Does Meiosis Lead to Diversity?


- Fertilization: Homologous chromosomes from parents have matching genes but may have different <u>alleles</u>. Each gamete produced is different, so each organism inherits a different combination of alleles.
- Crossing-Over: A process in which segments of <u>homologous</u> <u>chromosomes</u> break off and are <u>exchanged</u>. This increases genetic combinations.
- Independent Assortment: When the cell divides, each daughter cell receives a mix of chromosomes that differs from the original cell, creating diversity.
- Gene Mutation: Sometimes a mutation introduces a new trait into a population, increasing diversity of traits.


Benefits of Sexual Reproduction

- While sexual reproduction takes longer and produces less offspring than asexual reproduction, the offspring are genetically different. This is beneficial in a number of ways:
 - Offspring may be able to survive in more varied conditions (ex. Disease)
 - Undesirable alleles may be filtered out

Errors in Meiosis

Sometimes, <u>chromosomes</u> do not separate properly during meiosis. This is called *nondisjunction*, and can lead to an organism having an incorrect <u>number of chromosomes.</u>

