Measurements

Meters - distance
Grams - weight
Liters - volume

Distance Base $=$ Meters

Weight Base = Grams

Volume Base = Liters

Volume Base = Liters

When measuring volume with glassware, all measured digits plus one estimated digit are significant.

Meniscus: the concave or convex surface of a liquid due to cohesion, when measuring volume using one of the following:

- Beaker
- Graduated Cylinder
- Flask
- Pipette

Convex - molecules of the

Concave-molecules of the liquid attracted to container

Measured digit $=20 \mathrm{~mL}$
Estimated digit $=0.0 \mathrm{~mL}$
Measured volume $=20.0 \mathrm{~mL}$

Measured digit $=19 \mathrm{~mL}$
Estimated digit $=0.5 \mathrm{~mL}$
Measured volume $=19.5 \mathrm{~mL}$
liquid attracted to each other

Measured digit $=20 \mathrm{~mL}$
Estimated digit $=0.0 \mathrm{~mL}$
Measured volume $=20.0 \mathrm{~mL}$

Metric Conversion Stair-Step Method

King Henry Died By Drinking Chocolate Milk Kilo-
km Hecto-
kg hm Deka-
kl hg dkm Base Unit
hl dkg dkl

meters grams Liters

Scientac Method

The Scientific

 Method involves a series of steps that are used to investigate a natural occurrence.

STEPS OF THE Scientific Method

Scientific Method

1. State the Problem/Question
2. Observation/Research
3. Create a Hypothesis
4. Experiment
5. Collect and Analyze Results
6. Conclusion
7. Report

Steps of the Scientific Method

1. State the Problem/Question:

Develop a question or problem that can be solved through experimentation.
What do you want to learn?

Steps of the Scientific Method

2. Observation/Research: Make observations and research your topic of interest.
Find out as much as you can!

Steps of the Scientific Method

3. Create a Hypothesis: Predict a possible answer to the problem or question.

Example: If soil temperatures

rise, then plant growth will increase.

Steps of the

Scientific Method

4. Experiment: Develop and follow a procedure.
Include a detailed materials list.
The outcome must be measurable and repeatable.

$$
\begin{gathered}
\text { Steps of the } \\
\text { Scientific Method }
\end{gathered}
$$

5. Collect and Analyze Results: Modify the procedure if needed.
Confirm the results by retesting. Include tables, graphs, and photographs.

Steps of the

Scientific Method
6. Conclusion: Include a statement that accepts or rejects the hypothesis.
Make recommendations for further study and possible improvements to the procedure.

Steps of the
 Scientific Method

7. Report: Be prepared to present the project to an audience.
Expect questions from the audience.

Think you can name all

Scientific Method

1. State the Problem/Question
2. Observation/Research
3. Create a Hypothesis
4. Experiment
5. Collect and Analyze Results
6. Conclusion
7. Report

Let's put our knowledge of the Scientific Method to a realistic

 example that includes some of the terms you'll be needing to use and understand.

Problem/Question

John watches his

grandmother bake
bread. He ask his
grandmother what
makes the bread rise.
She explains that yeast
releases a gas as it feeds on sugar.

Problem/Question

John wonders if the amount of sugar used in the recipe will affect the size of the bread loaf?

Caution!

Be careful how you use effect and affect.

$$
\begin{aligned}
& \text { Effect - Result } \\
& \text { Affect - an Action }
\end{aligned}
$$

" The effect of sugar amounts on the rising of bread."
"How does sugar affect the rising of bread?"

Observation/Research

John researches the areas of baking and fermentation and tries to come up with a way to test his question. He keeps all of his information on this

John talks with his teacher and she gives him a Experimental
Design Diagram to help him set up his investigation.

General Layout for an Experimental Design Diagram

```
TITME
```



```
om
```

\qquad

``` (Deperadent vaxiable=,
HyPMPEIESSS
```

```
If
```

If
\
\
Gplammed cinampe= in imulepenuleme voriamblel,
Gplammed cinampe= in imulepenuleme voriamblel,
thuern
thuern
Ipuedicoed chamme im depr=malem= variable=1.

```
Ipuedicoed chamme im depr=malem= variable=1.
```

IMDPRPENDDFNET VARKAABILE
 TRCTATS

Level 1 chontroil	Lewel 2	Level 3	Level 4
Number of trials	Number of trials	Number of trials	Number of trials

CongsTANETS
1

2

3

4

Formulate a Hypothesis

After talking with his teacher and conducting further research, he comes up with a hypothesis. "If more sugar is added, then the bread will rise
 higher."

Hypothesis

The hypothesis is an educated

 guess about the relationship between the independent and dependent variables.Note: These variables will be defined in the next few slides.

Do you know the difference

 between the independent and dependent variables?

The independent, or manipulated variable, is a factor that's intentionally varied by the experimenter. (time, date, temp...)

John is going to use $25 \mathrm{~g} ., 50 \mathrm{~g}$. , $100 \mathrm{~g} ., 250 \mathrm{~g} ., 500 \mathrm{~g}$. of sugar in his experiment.

Dependent Variable

The dependent, or responding variable, is the factor that may change as a result of changes made in the independent variable.

In this case, it would be the size of the loaf of bread.

Experiment

His teacher helps him come up with a procedure and list of needed materials.
She discusses with John how to
determine the control
 group.

Control Group

In a scientific experiment, the control is the group that serves as the standard of comparison.

The control group may be a "no

 treatment" or an "experimenter selected" group.
Control Group

The control group is exposed to the same conditions as the experimental group, except for the variable being tested.
All experiments should have a control group.

Control Group

Because his grandmother
always used 50 g . of sugar in her recipe, John is going to use that amount in his control group.

Constants

John's teacher reminds him to keep all other factors the same so that any observed changes in the bread can be attributed to the variation in the amount of sugar.

Constants

The constants in an experiment are all the factors that the experimenter attempts to keep the same.

Can you think of some

 constants for this experiment?

Constants

They might include:
Other ingredients to the bread recipe, oven used, rise time, brand of ingredients, cooking time, type of pan used, air temperature and humidity where the bread was rising, oven temperature,
 age of the yeast...

Experiment

John writes out his procedure for his
experiment along with a materials list in his
journal. He has both of these checked by his teacher where she checks for any safety
 concerns.

Trials

Trials refer to replicate groups that are exposed to the same conditions in an experiment.

John is going to test each

 sugar variable 3 times.

Collect and Analyze Results

 John comes up with a table he can use to record his data. John gets all his materials together and carries out his experiment.
Size of Baked Bread (LxWxH) cm ${ }^{3}$

	Size of Bread Loaf $\left(\mathrm{cm}^{3}\right)$			
Amt. of Sugar (g.)	1	2	3	Average Size $\left(\mathrm{cm}^{3}\right)$
25	768	744	761	758
50 Control group	1296	1188	1296	1260
100	1188	1080	1080	1116
250	672	576	588	612
500	432	504	360	432

Collect and Analyze Results

 John examines his data and notices that his control worked the best in this experiment, but not significantly better than 100 g . of sugar.

Conclusion

John rejects his
hypothesis, but
decides to re-test
using sugar
amounts between
50 g . and 100 g .

Experiment

Once again, John gathers his materials and carries out his experiment.

Here are the results.

Conclusion

John finds that 70 g . of sugar produces the largest loaf. His hypothesis is accepted.

Communicate the Results

 John tells hisgrandmother about his findings and
prepares to present his project in
Science class.

