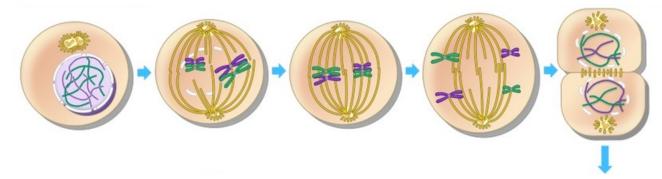

Mitosis	Meiosis
Mitosis is a form of	Meiosis is a form of
 This means it only requires organism, (ex) For growth and repair of (body) cells Results in cells to the original (parent) cell Recall that DNA is condensed into Humans have a total of 	 This means it takes organisms to make a new organism Results in daughter cells that are identical to the parent cells These daughter cells are called (sperm and egg cells) that combine to make a new organism Male Gamete:,
 different chromosomes per cell (pairs) of the pairs are autosomes (present in all) BUT, pair that are the chromosome either or When mitosis occurs, each new cell will 	 produced in the male, testes Female Gamete:, produced in the female, ovaries There are phases in Meiosis Meiosis I - the cell Meiosis II - the cell again, creating cells
 have chromosomes, just like the original The cells produced in mitosis are, they contain complete sets () of chromosomes 	 The cells produced in Meiosis meaning they only contain half of the chromosomes of a diploid cell (n) Each new cell will have of the original
	 Why only half? The gametes (n) fuse during fertilization to make a cell (2n) This new cell is called a and it will grow into a new organism

Mitosis Overview	Meiosis Overview
Asexual of of of of	 Reproduction A (2n) cell divides
 (2n) cell Chromosomes Divides Producesidentical cells withchromosomes 	 Produces different haploid (n) each with of the original chromosomes Gametes are the and cells Two gametes combine to form a diploid (2n) with its chromosomes (46)

	Mitosis	Meiosis
Type of Reproduction		
Purpose		
Number of Divisions		
Number of Cells Produced		
Number of Chromosomes		

Vocabulary Review: Define the following terms

- 1. Mitosis -
- 2. Meiosis -
- 3. Haploid -
- 4. Diploid -
- 5. Gametes -
- 6. Zygote -
- 7. Asexual Reproduction -
- 8. Sexual Reproduction -
- 9. Autosomal Cells -
- 10. Somatic Cells -


Why is Meiosis important?

•	Leads to greater
•	Genetic Diversity - traits that are of one
	another, allowing organisms to be genetically different
•	Groups with varying have a greater chance to and flourish, (ex)
•	Genetic diversity reduces the incidence of traits, (ex)
	Sources of Genetic Diversity
0	nonspecific unions of chromosomes during meiosis make genetic variation possible
	 Sexual Reproduction produces the amount of variation,
	which is essential for the survival of a population
0	produces distinct gametes, where (n)
	represents the unique number of chromosomes
0	homologous chromosomes (a set, 1 maternal
0	and 1 paternal)
	 exchange genetic material between chromosomes
	Result in greater
0	can cause variations in genes by introducing new traits into a population
	 that can be passed down are the ones found in the gametes
	 Mutations such as tobacco smoke cannot be passed down
	■ failure of homologous chromosomes to
	separate correctly
	What should happen Nondisjunction
	$(\mathbf{X}) (\mathbf{X}) (\mathbf{X})$

Source	Concept	Produced
	any set of genes has an equal opportunity of combining to be passed to the offspring	completely unique traits
	chromosomes exchange traits	homologous chromosome pair As the chromosomes move closer together, synapsis occurs.
	each allele is separate from one another	Possibility 1 Two equally probable arrangements of chromosomes at metaphase II Combination 1 Combination 2 Possibility 2 Two equally probable arrangements of chromosomes at Daughter cells Combination 3 Combination 4
	introduction of altered genes in a population, not all gene mutations can be passed down	Point Mutation Frameshift Mutation Frameshift Mutation Frameshift Mutation Frameshift Mutation Frameshift Mutation Frameshift Mutation Frameshift Mutation Frameshift Mutation

Label each of the following:

Meiosis I

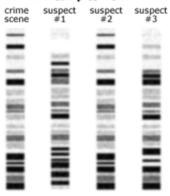
Meiosis II

Karyotype

- Map of an _____ chromosomes
- Usually completed to check for ______
- Each cell contains the same genetic information therefore they only examine one cell
- Each homologous pair is matched according to their
 - size
 - **____**
 - location of centromere
 - band patterns
- Autosomal or somatic chromosomes are ______ first, the first 22 pairs
- The _____ pair, sex chromosomes are placed at the end

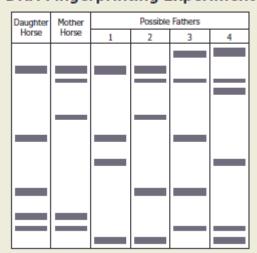
Chromosomal Abnormalities

★ Trisomy 21 or Down's Syndrome
★ Cri-du-Chat Syndrome
★ 47, XXY or Klinefelter Syndrome
★ Turner Syndrome
Which parent determines the sex of their offspring?
What sex cells represent a female?


What sex cells represent a male?

Vocabulary Review: Define the following terms

- 1. Homologous Chromosome -
- 2. Random Fertilization -
- 3. Independent Assortment -
- 4. Crossing Over -
- 5. Gene Mutation -
- 6. Nondisjunction -
- 7. Genetic Diversity -
- 8. Karyotype -
- 9. Trisomy Syndrome -
- 10. Cri-de-chat Syndrome -
- 11. Klinefelter Syndrome -
- 12. Turner Syndrome -


Biotechnology: Genetic Engineering

▶ _	refers to any process in which manan organisms
	• Examples:
el Elec	trophoresis
	is the process of separating based on
	 This process of comparing is used in a number of things, including individuals through
	■ ID
	■ relationships
	 b. Fragments are run on through an electric current fragments move (not as far), while pieces will move
	 (farther) c. These movements will create on the gel that can be read under UV ligh or through
	d. The different bands are then able to be compared to other segments fo
≻ R	 eading Gels: Identifying Individuals DNA are different for every person Can be used to identify
	• Call be used to identify
	\circ Which suspects get on the right matches the scene of the crime?
	 Which suspects gel on the right matches the scene of the crime? DNA samples from:

> Reading Gels: Paternity

- Parental gels can help determine the father
- Gels are read with ______ the bands coming from mom and half from ______
- In the gel below, who is the father shown 1, 2, 3 or 4?

DNA Fingerprinting Experiment

> Reading Gels: Endangered Species

Species can be identified using gel electrophoresis - used in ______
 and ______ species

Transgenic Organisms

- > A transgenic organism is any organism that has a _____ from another organism within it
 - Inserting a _____ piece of _____ into a cell
 - Transgenic organisms come about when humans would like the ______ of one organism to be present in another!
 - Transgenic organisms are commonly used in agriculture and industries like pharmaceutical companies
- > Transgenic Organisms: Agriculture
 - Sometimes, transgenic organisms are grown in ______ in order to help keep crops _____, resist _____, produce higher yield and last longer
 - Examples: _____
- ➤ Transgenic Organisms: Industry
 - Transgenic organisms have allowed for the production of things previously unavailable to us

- Examples: _____
 - Insulin dependent diabetics must inject insulin because their body does not produce or use it normally
 - Thanks to genetic engineering, scientists have found a way to create
 _____ insulin produced by ______ or yeast
- Things like this are done through a process called ______
 - Steps of Bacterial Transformation:
 - First, you must ______ the gene of interest
 - Insertion of foreign DNA gene into bacterial ______. Done using restriction enzymes and DNA ligase.
 - A plasmid is a genetic structure in a cell that can be separated from the
 _____ DNA and replicate independently; typically used
 in lab manipulation of ______

 - Selecting the ______transformed bacteria
 - Producing the _____
 - The bacteria has now been ______to produce the product based on the genes that were selected and inserted (example:)

Selective Breeding: _____

• Example:

The Human Genome Project

- Started in _____, the Human Genome Project was started with the goal of
- determining the ______ of chemical base pairs that make up human _____
- The ______ was established with the hope that knowing the human genome would allow them not only to ______ genes that cause genetic conditions (diabetes, heart disease, cancer), but also
- The Human Genome Project was successfully completed in _____
- ➤ For the first time, scientists were able to read the _____ of a human being

Gene Therapy

- Gene therapy is a method of using ______ to treat or ______
 - Nucleic acids ______ inserted into cells as a drug are used to express proteins or interfere with expression
 - Remember: DNA codes for ______ that determines traits!
- ➤ Uses include:
 - _____: An immunodeficiency disease in one in which disorders prevent the body from fighting infections and diseases the way it should

Ethical Issues in Biotechnology

- Genetically modified organisms, or _____, are often a big debate-especially since many are _____ by us!
 - Example: _____
- They are produced for numerous reasons in order to benefit ______, including increasing crop production, lowering ______
- There is debate; however, on whether this is always ______ for human consumption since the ______ do not occur ______
 - Allergies, gene transfer to cells of the body

The Debate over Biotechnology

- When talking about this topic, the largest issue is always the ______ of such methods
- What do you think?
 - Should science ____?
 - Should science improve other organisms?
 - What _____ might there be to this technology?

> Transgenic Organisms

- Example: _____
- Used to: _____

≻ Cloning

- Making an _____ copy of an organism
- Steps:
 - Take unfertilized egg from a female and remove the ______
 - Retrieving the nucleus of _____ (body) cell of individual you would like to clone
 - Inserting the somatic nucleus into _____ cell
 - Providing ______ factors needed
- First animal to be cloned was Dolly the sheep in 1996

➤ Gene Therapy

- Recall that gene therapy uses the alteration of a person's genes to treat genetic conditions
- Ethical issues surrounding this include:
 - Who decides which _____ are normal/faulty?
 - Will this only be available to ______ individuals?
 - Should it be used to ______ other traits, like height, intelligence or athletic ability?

➤ Stem Cells

- Stem cells are _____ cells that can become any different type of cells
 - Recall that differentiation takes place as a ______ develops undifferentiated cells become complex system of tissues and cell types
 - can become all cell types in the human body
 - thought to be limited to differentiating into only those cell types of their tissue of origin (ex. brain, heart, blood, etc)
 - are used in research with the potential to treat diseases and aid in research
 - However, ______ issues cause debate since stem cells are derived from zygotes - in order to use them, human embryos must be
 - Debate is still ongoing, but new research about stimulating a patient's cells to behave like stem cells may open new possibilities

> WHAT DO YOU THINK?