RNA and Protein Synthesis Guided Notes

- _____ is responsible for controlling the production of ______ in the cell, which is essential to life!
 - DNA→RNA→Proteins
- ______ contain several thousand ______, each with directions to make one

Where are Proteins Produced?

- Proteins are produced on _____!
- Found in two places:
 - Free floating in _____
 - Attached to ______
- How does information needed to build a protein gets delivered from the DNA to the ribosomes?
 - With the help of _____ in a process called _____

What is RNA?

- RNA stands for ______
- One subunit is called a ______
 - 1 5-carbon _____ (ribose)
 - o 1 _____ group
 - 1 nitrogenous _____
- Three types of RNA: ______

A Closer Look at mRNA

- How is mRNA different from DNA?
 - o _____ stranded
 - _____ and able to leave the _____
 - The sugar is _____
 - There is a different base
 - _____ (U) takes the place of
 - _____ (T)
- The job of mRNA is to take directions for one gene and transport it to a _____ in the _____
 - This is so a cell can begin assembling
 _____, the building blocks of
 _____!

It's sending a _____ on how to do the job!

Protein Synthesis

- Protein synthesis is a two stage process: ______
 - A ______ molecule (mRNA) carries instructions from DNA to ribosomes
 - DNA ______ leave the nucleus; ______ can!
 - _____ makes it possible for _____ to be assembled by _____ outside the nucleus

Protein Synthesis: Transcription

- Transcription is when _____ is turned to ______
- Happens when ______ need to be made in the ______
- Since DNA CANNOT leave the _____, it is _____ into RNA (DNA→RNA)
 - Transcribe: _____ (copy in the same nucleic acid language, but only what is needed!)
- How does it happen?
 - 1) After an ______ targets the portion of the DNA that should be copied
 - (_____), the sections of DNA (_____) will temporarily _____ to allow
 - mRNA to ______ (copy). This will continue until an enzyme signals "the end"
 - mRNA leaves the _____, travels into the _____ and attaches to a _____
 - 3) The "message" from DNA can now be translated to make a ______

- Transcribing DNA to mRNA is very easy if you remember these complementary pairs!
 - _____ (in RNA) will attach to a _____ (in DNA)
 - _____ (in RNA) will attach to a _____ (in DNA)
 - _____ (in RNA) will attach to a _____ (in DNA)
 - (in RNA) will attach to a _____ (in DNA)
- Try it!
 - A piece of DNA reads: T A G C A T T C C G A U Transcribe to mRNA:
 - 1 side of DNA reads: A A G C G T A T C C C G Transcribe to mRNA:

Protein Synthesis: Translation

- Translation→ The process in which _____ is used as a _____ to form chains of _____ (RNA→Protein)
 - Amino acids linked together form a ______
 - Translate: To change a sentence from one language (______) to another
 (______)
- Every 3 letters on an mRNA chain = _____
- Each codon (3 DNA letters) = 1 ______
- Given the _____, we can read a _____ chart to translate it into amino the amino acid it codes for!
 - Remember, 1 word in nucleic acid language is a _____ (three nucleotides)

	First		A Second Letter				Third
		Letter	U	C	A	G	Letter
Think about it: What amino acid is coded		U	phenylalanine	serine	tyrosine	cysteine	U
for?			phenylalanine	serine	tyrosine	cysteine	С
			leucine	serine	stop	stop	A
			leucine	serine	stop	tryptophan	G
I) AUG			leucine	proline	histidine	arginine	υ
2) GUC		c	leucine	proline	histidine	arginine	C
, <u></u>			leucine	proline	glutamine	arginine	A
3) GCC			leucine	proline	glutamine	arginine	G
			isoleucine	threonine	asparagine	serine	υ
4) CGA		A	isoleucine	threonine	asparagine	serine	С
5) UAA			isoleucine	threonine	lysine	arginine	A
o/ o/u((start) methionine	threonine	lysine	arginine	G
			valine	alanine	aspartate	glycine	υ
		G	valine	alanine	aspartate	glycine	C
			valine	alanine	glutamate	glycine	A
			valine	alanine	glutamate	glycine	G

_)

- *Translation* occurs in a _____ in ALL cells
- DNA is not directly used!

Steps of Translation

tRNA: A Closer Look

P site

ARG

- a) ribosome
- b) mRNA
- c) tRNA
- d) codon
- e) anticodon
- f) amino acid chain

Let's Practice!

- Given the strand of DNA \rightarrow **ATC**
 - What would it's complementary DNA strand read? _____
 - Now, transcribe the DNA to mRNA
 - What amino acid does the codon code for? (use chart) ____
 - What would the anticodon on tRNA read? _____
- Given the strand of DNA → **TGA**
 - What would it's complementary DNA strand read? ______

- Now, transcribe the DNA to mRNA ______
- What amino acid does the codon code for? (use chart) ______
- What would the anticodon on tRNA read?

Mutations

- Changes to DNA are called ______
 - Change the _____
 - Change the _____
 - May change ______
 - May change ______

Types of Mutations

- Changes to the letters (ATGC bases) in DNA!
- **Point mutation**→ change to _____ letter in the DNA!
 - May (or may not) cause a change to protein
- Frame shift mutation → addition of a _____letter; or deletion of a letter!
 - Both of these _____ DNA so it changes how the codons are read
 - Big changes to protein

Point Mutations

Missense mutation = _____ (Ex. Sickle Cell Anemia)

Silent mutation= _____

Nonsense mutation=

1	issense	Mutation	าร
	GAA	GCA	CGT
	Glu	Ala	Gly
G	GAC	GCA	CGT

N	onsense	Mutatio	าร
ATG	GAA	GCA	CGT
Met	Glu	Ala	Gly
ATG	TAA	GCA	ССТ
Met	STOP		

Frameshift Mutations

- _____ or _____ one or more bases
 - Change the meaning of the whole protein!
- Addition

•

Deletion→

ATGCCTGGTTATGA TACGGACCAATACT -	Altered reading frame
ATGCCTGTTATGA TACGGACAATACT Deletion	Normal reading frame
A T G C C G T T A T G A T A C G G C A A T A C T	Altered reading frame